Title: Locally sparse function-on-function regression
Abstract: In functional data analysis, functional linear regression has attracted significant attention recently. In this seminar, I will consider the case where both the response and covariates are functions. There are two available approaches for addressing such a situation: concurrent and nonconcurrent functional models. In the former, the value of the functional response at a given domain point depends only on the value of the functional regressors evaluated at the same domain point, whereas, in the latter, the functional covariates evaluated at each point of their domain have a non-null effect on the response at any point of its domain. To balance these two extremes, we recently proposed a locally sparse functional regression model in which the functional regression coefficient is allowed (but not forced) to be exactly zero for a subset of its domain. This is achieved using a suitable basis representation of the functional regression coefficient and exploiting an overlapping group-Lasso penalty for its estimation. The empirical performance of the method is assessed through simulations and two applications related to human mortality and bidding in energy markets.